1 | Vector analysis, Orthogonal coordinate systems | [1] s.1-36. [3] s. 10-31. |
2 | Gradient and divergence calculations | [1] s. 37-52. [3] s. 37-45. |
3 | Curl of a vector field, the Helmholtz theorem, the null identities | [1] s. 53-72. [3] s. 48-62. |
4 | Introduction to the electrostatic fields, fundamental postulates of electrostatics, Coulomb's Law, distrubition of charge | [1] s.73-88. [3] s. 65-77. |
5 | Gauss Law's and applications | [1] s. 89-106. [3] s. 78-91. |
6 | Conductors and Dielectrics in electrostatic fields | [1] s. 107-125. [3] s. 91-104. |
7 | Boundary conditions for electrostatic fields, capacitance and capacitors, electrostatic energy and forces, Poisson's and Laplace's equations | [1] s. 126-165 [3] s. 105-138. |
8 | midtern exam | |
9 | Introduction to the magnetostatic fields, fundamental postulates of magnetostatics, vector magnetic potential | [2] s. 1-9.[3] s. 196-203. |
10 | Biot-Savart law and applications, the magnetic dipoles | [2] s. 12-22. [3] s. 204-213. |
11 | Magnetization and equivalent current densities | [2] s. 26-30. [3] s. 213-216. |
12 | Magnetic field intensity and the relative permeability, magnetic circuits | [2] s. 31-41. [3] s. 217-224. |
13 | Behavior of magnetic materials, boundary conditions for magnetostatic fields | [2] s. 42-52. [3] s. 225-232. |
14 | Inductance and inductors | [2] s. 53-65. [3] s. 233-241. |